Cancelling out is a mathematics process used for removing subexpressions from a mathematical expression, when this removal does not change the meaning or the value of the expression because the subexpressions have equal and opposing effects. For example, a fraction is put in lowest terms by cancelling out the of the numerator and the denominator. As another example, if a× b= a× c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b= c; this is equivalent to dividing through by a.
At times, cancelling out can introduce limited changes or extra solutions to an equation. For example, given the inequality ab ≥ 3 b, it looks like the b on both sides can be cancelled out to give a ≥ 3 as the solution. But cancelling 'naively' like this, will mean we don't get all the solutions (sets of ( a, b) satisfying the inequality). This is because if b were a negative number then dividing by a negative would change the ≥ relationship into a ≤ relationship. For example, although 2 is more than 1, –2 is less than –1. Also if b were zero then zero times anything is zero and cancelling out would mean dividing by zero in that case which cannot be done. So in fact, while cancelling works, cancelling out correctly will lead us to three sets of solutions, not just one we thought we had. It will also tell us that our 'naive' solution is only a solution in some cases, not all cases:
So some care may be needed to ensure that cancelling out is done correctly and no solutions are overlooked or incorrect. Our simple inequality has three sets of solutions, which are:
Our 'naïve' solution (that a ≥ 3) would also be wrong sometimes. For example, if b = –5 then a = 4 is not a solution even though 4 ≥ 3, because 4 × (–5) is –20, and 3 x (–5) is –15, and –20 is not ≥ –15.
|
|